• Edizioni di altri A.A.:
  • 2018/2019
  • 2019/2020
  • 2020/2021
  • 2021/2022
  • 2022/2023
  • 2023/2024
  • 2024/2025
  • 2025/2026
  • 2026/2027

  • Lingua Insegnamento:
    Le lezioni saranno svolte in Italiano. Slides e libri di testo saranno principalmente il lingua Inglese 
  • Testi di riferimento:
    Dispense del corso ed esercitazioni pratiche utili per gli studenti non frequentanti
    James, Witten, Hastie, Tibshirani (2013) An Introduction to Statistical Learning (with Applications in R), Springer-Verlag
    Hastie, Tibshirani, Friedman (2009) The elements of statistical learning: data mining, inference and prediction. 2nd edition, Springer-Verlag
    Wickham (2016) ggplot2. Elegant Graphics for Data Analysis. 2nd Edition, Springer-Verlag
    Maindonald, Braun (2010) Data Analysis and Graphics Using R: An Example-Based Approach . 3rd edition, Cambridge University Press

    In italiano si consigliano
    James, Witten, Hastie, Tibshirani (2020) Introduzione all'apprendimento statistico (con applicazioni in R),
    Azzalini, Scarpa (2004) Analisi dei dati e data mining, Springer-Verlag 
  • Obiettivi formativi:
    L’insegnamento si inserisce nel generale obiettivo del corso di studio di fornire conoscenza riguardo all’analisi dei dati in ambito aziendale.
    L’insegnamento si propone di fornire allo studente gli strumenti per estrarre informazioni rilevanti da grandi moli di dati, con particolare
    attenzione all'apprendimento statistico (statistical learning) sia in contesto predittivo che non (apprendimento supervisionato e non).

    RISULTATI DELL'APPRENDIMENTO ATTESI
    L'insegnamento prevede di completare la formazione dello studente con nozioni e strumenti utili ad approfondire gli aspetti dell’analisi statistica in
    ambito aziendale. La formazione sarà quindi completata e arricchita dalle seguenti competenze:

    Conoscenza e capacità di comprensione
    - Conoscenza di concetti statistici per l’analisi multivariata e relativa terminologia specializzata
    - Capacità di applicare i principi di ragionamento statistico nell'elaborazione e nell'interpretazione dei report aziendali
    - Capacità di applicare l'analisi statistica allo studio del comportamento e delle decisioni dei consumatori e delle imprese;
    - Capacità di utilizzare il software R per l’analisi statistica

    Autonomia di giudizio
    - Apprendere i concetti logici e statistici che sono indispensabili per lavorare autonomamente nella ricerca, selezione ed elaborazione di dati
    aziendali e utilizzando fonti statistiche ufficiali.
    - affrontare in maniera critica problematiche di tipo economico
    - analizzare criticamente le fonti di informazione di tipo economico

    Abilità comunicative
    - Imparare la terminologia e le tecniche statistiche di analisi multivariata per comunicare o discutere correttamente i risultati dell'analisi dei dati
    aziendali e dei report aziendali 
  • Prerequisiti:
    Conoscenze di matematica generale, algebra delle matrici e statistica inferenziale 
  • Metodi didattici:
    Lezione frontale ed esercitazioni in aula informatica con utilizzo del software R 
  • Modalità di verifica dell'apprendimento:
    L’esame si articola in una prova scritta di 90 minuti (esercizi in R e domande aperte con spazio predefinito, volte a
    verificare la conoscenza della parte teorica degli argomenti trattati a lezione) e in una presentazione orale di gruppo (facoltativa) di un report redatto per l’analisi di
    un data set mediante l’uso del software R.

    Nell’ambito dell’esame, la prova facoltativa darà la possibilità di aggiungere una votazione da 1 a 3 al voto finale qualora lo studente abbia raggiunto la sufficienza nella prova scritta. Il voto finale sarà dato dalla somma del voto ricevuto nella prova scritta (in trentesimi) e dalla votazione del report, qualora questo sia stato consegnato. 
  • Sostenibilità:
    I temi trattati nel corso sono riconducibili ad alcuni dei 17 obiettivi caratterizzanti l'Agenda 2030 per lo sviluppo sostenibile. In particolare, le tematiche trattate faranno riferimento ad alcuni target dei goal "Salute e benessere", "Città e comunità sostenibili" e "Lotta al cambiamento climatico" 
  • Altre Informazioni:
    E-mail: andrea.bucci@unich.it

    Giorni ed orari di ricevimento studenti: Martedì 15:00 – 17:00 e per appuntamento da concordarsi via e-mail. 

Il corso prevede la trattazione dei seguenti argomenti per il raggiungimento dei risultati di apprendimento attesi: introduzione al data
mining e statistical learning, Tecniche di visualizzazione dei dati, Tecniche di regressione e classificazione, Apprendimento non
supervisionato (analisi delle componenti principali e metodi di raggruppamento)

Il corso si propone di introdurre metodi e modelli per estrarre informazioni rilevanti da grandi moli di dati, con particolare attenzione
all'apprendimento statistico (statistical learning) sia in contesto predittivo che non (apprendimento supervisionato e non). Al fine di fornire le
competenze per l'analisi e la modellazione di dati reali, le lezioni saranno integrate da esercitazioni in R svolte in aula informatica.

Programma:

Introduzione al data mining e statistical learning.

Tecniche di visualizzazione dei dati.

Regressione e Classificazione: regressione lineare multipla, analisi discriminante e K-nearest neighbors.

Metodi non-lineari (regressione flessibile): regressione polinomiale e modelli additivi generalizzati.

Apprendimento non supervisionato: regole di associazione, analisi delle componenti principali, metodi di raggruppamento (cluster gerarchica e misture)

Avvisi

Nessun avviso in evidenza

Documenti

Nessun documento in evidenza

Scopri cosa vuol dire essere dell'Ud'A

SEDE DI CHIETI
Via dei Vestini,31
Centralino 0871.3551

SEDE DI PESCARA
Viale Pindaro,42
Centralino 085.45371

email: info@unich.it
PEC: ateneo@pec.unich.it
Partita IVA 01335970693

icona Facebook   icona Twitter

icona Youtube   icona Instagram